In case of Neanderthal uprising…

Recently there’s been quite a bit of news about Professor George Church of Harvard Medical School wanting an adventurous woman to give birth to a Neanderthal baby. Though the quotes are now being said to be completely fabricated.

However, this cropped up on Adam Van Arsdale’s blog today and I thought it funny enough to share here.

Incaseofnenderthaluprising

The New Pluralistic Approach

There has been a lot of talk round these parts recently of the merits of pluralistic approaches to problems in language evolution, and condemning the assignment of too much explanatory power to statistical correlations away from other forms of evidence, such as cultural learning experiments. Sean and James recently published a paper about this here which includes some commentary on Hay & Bauer (2007), who find that speaker population size and phoneme inventory size correlate (the more speakers a language has, the bigger its phoneme inventory is). James has blogged about this extensively here. More recently Moran, McCloy & Wright presented a critical analysis of Hay & Bauer’s (2007) findings here along with a statistical analysis of their own which uses more languages than Hay & Bauer (2007), and finds little to no correlation between speaker population and various measures of the phonological system, I hope James will do a blog about this as the resident expert.

As I’ve just mentioned, doing further statistical analysis is one good way of disputing or confirming the results of large scale statistical studies. But turning to experimental evidence is also a good way to back up the findings of statistical results and to tease out patterns of causation. I discuss this briefly here.

Recently, I was reading Selten & Warglien (2007) (mentioned by James here and covered by John Hawks here), which is a study which looks at how simple languages emerge within a coordination task with no initial shared language. The experiment uses pairwise interactions in which participants had to refer to figures which could be distinguished using features on three levels of outer shape, inner shape and colour (see picture). Participants were given a code which had a limited number of letters which they were to use to communicate with one another. However, the use of letters within this code had a cost within the language game the participants were playing, so the less letters they used the higher their score. Also, the more communicatively successful they were, the higher their score.

selten figure 2

The study was primarily interested in what enhanced the emergence of structure in this code via the communication game. They looked at the effects of 2 variables, the number of letters available and variability in the set of figures.  I am only going to discuss the effects of the first variable here. Selten & Warglien (2007) start off with an experiment where only two (and then three) letters were available which showed very little convergence to a common code. A common code is defined as being a code where the signals for all figures agree between the two participants. However, when given a larger inventory of letters to play with, participants were much more successful at creating a common code. This is not surprising as more symbols permit a higher degree of cost efficiency within the language game as you can use more distinct, shorter expressions. Selten & Warglien (2007) also make the point that the human capability to produce a large variety of phonetic signals seems to be at the root of the emergence of most linguistic structure, because if you only have a small inventory of individual units, you have to rely more on positional structure. Positional systems are systems like the Arabic number notation which are more likely invented rapidly rather than the product of slow emergence via cultural evolution, but can be easily used once they have emerged.

This is all very interesting in its own right, but the reason I brought it up in this post is that Selten & Warglien (2007) have shown that you can experimentally explore the effects of the size of inventory on an artificial language in a laboratory setting. I know that the natural direction of causation is to assume that demographic structure (e.g. the size of a population) affects the linguistic structure (e.g. the size of the phoneme inventory), but it might be possible to see whether a common code can be more easily reached within a small language community using only a small number of phonemes, than with a larger speaker community. I’m also not sure how one might create an experimental proxy for size of population in an experiment such as this (perhaps repeated interaction between the same participants compared with interaction within changing pairs). It might also be possible to look at the effects that the size of inventory can have on other linguistic features that have been hypothesised to correlate with population size, e.g. how regular the compositional structure of an emerging language is given difference inventory sizes.

References

Hay, J., & Bauer, L. (2007). Phoneme inventory size and population size Language, 83 (2), 388-400 DOI: 10.1353/lan.2007.0071

Roberts, S. & Winters, J. (2012). Social Structure and Language Structure: the New Nomothetic Approach. Psychology of Language and Communication, 16(2), pp. 79-183. Retrieved 12 Feb. 2013, from doi:10.2478/v10057-012-0008-6

Selten, R., & Warglien, M. (2007). The emergence of simple languages in an experimental coordination game Proceedings of the National Academy of Sciences, 104 (18), 7361-7366 DOI: 10.1073/pnas.0702077104

Sexually selective understanding of evolutionary psychology and its political applications

There is a “Skeptics In The Pub” event in Glasgow on March 4th, where Dr Thom Scott-Phillips will be discussing the perceptions and misconceptions of evolutionary psychology, in light of the public backlash against it that seems to be increasing all the time. This kind of public engagement is very sorely needed if we are to combat the rampant misinformation that crops up in both academic and non-academic communities. Among the criticisms being addressed at the event are the claims that evolutionary psychology is sexist, racist, or otherwise politically problematic. This is an important discussion.

From what I see around the feminist blogosphere, evolutionary psychology has a bad rap. Some recent examples I’ve come across include comments such as: “This new junk science named “evolutionary psychology” is the last variant of the male supremacy bible, following Freud’s mythology” and “[the way this article approaches the problem] is a bad idea [because] It smacks of evo psyche”. Even more liberal feminist blogs such as The F Word UK toe a similar line: Josephine Tsui seems to be on a personal mission against Evolutionary Psychology, armed with such ludicrous arguments as “You cannot replicate Evolutionary Psychology therefore it fails the methodologies of science” which display both an immature line of thinking and a fundamental misunderstanding of the theoretical motivations and methodologies entailed. Needless to say I’ve never seen this criticism leveraged against Evolutionary Biology, despite it being applicable to both.

Evolutionary psychology has a sound theoretical basis; it has been well established that natural selection is a means by which complex life and complex behaviour occurs. This tends to worry political movements like feminism, which has its roots in social constructionism. Such worry is unfounded; there is certainly a role for social constructionism within an evolutionary account of human behaviour. Put broadly, our plastic brains depend on complex social learning and pedagogy, which is an established cornerstone of human success. This ability to respond to (and be shaped by) the cultural environment has itself been selected for in humans, and can account for all manner of behaviours from language to mating preferences. Keep reading for a demonstration of how evolutionary psychology can in fact lend itself very well to the goal of engineering of social change.

So, on one side of the sexually selective understanding coin is a worried feminist movement, who risk losing a good grasp of evolutionary psychology by dismissing it entirely. On the other side, are the misogynist (mis)interpretations that have inspired this trepidation in the first place. That evolutionary psychology is abused and misinterpreted by misogynists and racists (and let’s be real here, this has happened a lot) is the problem, and it’s a serious one with real political consequences. Just this year, Steve Moxon submitted evidence to parliament (and was subsequently invited to speak) against the development of measures to encourage women in the workplace. Evolutionary psychology formed the backbone of his case, and he is not alone. Only an informed public can approach these claims with adequate discernment, so it is important that we address how some claims are morally wrong and incorrect. But it is also as important to discuss why they do not represent anything inherent about evolutionary psychology as a discipline.

We can illustrate the first way that evolutionary psychology can be wrong by using the problem of eugenics. Eugenics is theoretically sound, in as much as we know that we can selectively breed to a criteria and expect a predictable result; we’ve been doing it with dogs for 10 thousand years. This is also morally wrong and should not be attempted in humans. Just because eugenics is morally reprehensible, however, doesn’t mean we say the principles of artificial (or natural) selection aren’t true. Nor should this be the case for evolutionary psychology as a field; that it has been misapplied/misinterpreted within our social context (or just says something that we don’t like) simply does not speak to how scientifically correct it is. Another way that the interpretation of these studies can be grossly wrong is the Naturalistic Fallacy; the idea that if something is natural, it is inherently good or should be normative. This is obviously untrue; my human body is adapted to long-distance running, but I reject outright the idea that this is something I ought to engage in.

While citing the naturalistic fallacy is a good answer to most any claim about innate human proclivities, I think it’s also necessary to refute specific claims on their own grounds where possible. The final way for evolutionary psychology to be wrong is simply that rationalisation isn’t science, and instances where it is being passed off as such can be exposed for what they are. To illustrate, we generally do not dismiss the entirety of modern medicine as false because of the historical mistreatment of pregnant women in childbirth by doctors. Here, we  can see that those occurrences are indeed morally wrong. However, it’s also the case that those instances are bad medicine by medicine’s own standards. Similarly, instances of bad science in evolutionary psychology, where latent misogyny and racism rears its head, can be refuted on their own grounds. This can and should be done without blithely dismissing the entire field.

It is a disaster that large factions of social justice movements are on the verge of outright anti-intellectualism when it comes to evolutionary psychology. Preserving ignorance about the field with out-of-hand dismissal neglects the potential for this tool to contribute to worthwhile political goals. We don’t have to stop at simply refuting the harmful instances of bad evolutionary study; there is also a positive agenda to be highlighted here. In the spirit of this, I’d like to share a preview of some work I’ve been hobbying with Justin Quillinan, inspired by a recent paper called “Asia’s Missing Women: A Problem in Applied Evolutionary Psychology?”. The paper aims to explore sex-preferential parental investment, which is a prolific problem in parts of Asia, the Middle East and North Africa, where the population’s sex-ratios are heavily male skewed as a result. It is already well documented that women suffer like this, so what can an evolutionary analysis can bring to the table? The problem, as presented in the paper, is this:

Asia’s missing women are, in economic terms, an aggregate outcome of millions of parenting decisions. The individual drivers behind those decisions emerge from interactions between our evolved parenting preferences and social and economic circumstances.

How do we untangle this seemingly nebulous problem? How do we determine why many self-perceived individuals act in such a similar way that the net result is the literal eradication of the female class? The approach of the paper seems to be largely influenced by economics, which is fairly central to a lot of evolutionary work. Game theory can be paraphrased as something like “given that the rules of the game are (x, y, z), which strategy should I employ to reap the most advantageous outcome?”. The most successful strategy is the one that is most likely to survive in the population, and hence it is the one we most expect to find. If we treat the problem of parents favouring boys over girls as a solution to the problem of parents’ circumstances, the question then becomes “what are the parameters that make this survival strategy worth employing such that it is so common?”

By comparing the commonalities in cultures that have this problem, Brooks identifies some ecomonic and social factors that may reward preferential parental investment. This is important: it means that campaigners for change don’t have to simply say the reason that girls are selectively aborted or neglected starts and ends with “girls are undervalued in these cultures”. Despite how true that is, it is also true of many cultures who do not have skewed sex ratios, and doesn’t really point to any concrete way of tackling the problem. If we can identify the driving factors that make parents behave this way with an evolutionary analysis, it means we can target specific structures with a specific end goal in mind.

In an interesting and  wide-ranging investigation, the paper compares skewed parental investment occurence in non-human animals with the social and historical particulars that have led to this behaviour in disparate human populations. In doing so, Brooks proposes that male sex-biased populations are the systematic result of a population’s patrilineage, patrilocal kinship systems, and the dowry system. It was my hunch that the sex-biased population ratio could be reducible to patrilocality alone; that is, the system whereby women leave their blood relatives in order to live with (and care for) their husband’s family when they marry. Let us assume that the number of blood relatives in your family is a proxy measure of fitness. In a patrilocal social order, it is necessarily the case that having a son is more advantageous than having a daughter – precisely because daughters will always leave. Let us now also factor in the effects of infanticide and abortion; the option to neglect/kill your male/female offspring according to whether or not the most successful families you know had a boy or girl, will lead to the preferential elimination of females.

So we’ve implemented a model (source code available here) demonstrating exactly this:
We start with a population of agents separated into a number of families of a single breeding pair each single individuals. At each time-step, the following events occur:
1. Reproduction: fertile breeding pairs of agents have a new agent ‘child’ of random sex. A fertile pair is one that does not have an unmarried child that is younger than the age of maturity.
1.2. Abortion: Now, the pair can choose to either keep or to abort their new agent. To make this decision, they choose a random family, with larger families having a proportionally higher probability of being chosen. If the sex ratio of that family is a mismatch to the child they have just had, they will abort the child. Otherwise, they will keep it. (ETA: the abortion decision is based on the sex ratio of all the offspring of the chosen family).
2. Marriage: Every single, mature agent attempts to pair with a random, opposite sex partner from a different family, to form a breeding pair. In patrilocality, the female leaves her family and is appended to her husband-agent’s family to form a breeding pair. (In the matrilocality sanity check, the situation is vice versa and male agents join their wives’ families).
3. Death: Agents above a certain age are removed from the population. If a family no longer has any members, we generate a new breeding pair individual so that the population doesn’t die out.

The first null model was as above, with the omission of step 1.2. We later implemented one that is as above, but minus patrilocal marriage (ie, married agents simply form a new family pair) because this is a better comparison.

At each time-step, we measure the sex ratio of the population. This is what happens (wordpress is terrible, click for a clearer image):

Graph1
Average of 500 runs, seeded from 50 family breeding pairs

The sex-ratio of the population is skewed in the direction of the sex that determines family locality – that is to say, patrilocality alone systematically results in the preferential abortion of female offspring, and a higher ratio of males in the population to females. This model will hopefully lend itself to some further work exploring the role of the dowry in maintaining the system by offsetting the costs of giving away offspring, preferential marrying, and how a shift toward “nuclear” family arrangements may have lifted the cost-benefit situations disadvantaging females (and thus making dowry systems redundant).

UPDATE (09/02/12): Here is the data using an amended null model:

Average of 1000 runs, seeded from 50 individuals
Average of 1000 runs, seeded from 50 individuals

The ‘bump’ at around time-step 20 in the first graph noticed by Sean (see comments section) doesn’t appear here; this was an artefact of seeding with identical pairs that breed and die at the same time. Seeding with individuals has smoothed out that curve; staggering the ages of agents would likely smooth it out further. The extra noise in this model means that the skew is less pronounced than before; note the Y axis is zoomed in to ~0.3 – 0.7. The null model here is of the null hypothesis; abortion still happens, the only difference is that instead of a married agent appending to their spouse’s family, the married couple form a new family pair (ie. no matri/patrilocality). This means that any single given population’s sex ratio is susceptible to drift; early, small aberrations toward male or female will become magnified over time. This is, however, equally likely to happen for either male or female, and so the average of 1000 populations shown here is stable at 0.5.

Further implications:
An important additional observation in Brooks’ paper is an examination of the wider social consequences of this particular set of circumstances. The paper names elevated levels of “men competing furiously for wealth and status” as well as “risk-taking, violence, gambling, alcohol and drug abuse, kidnapping and trafficking of women, and the use and abuse of prostitutes” as consequences of surplus males in the population. The implication is that, by this model, these large societal problems can be addressed at least in part by balancing parental investment in children of both sexes, which would be remarkable.

At first blush, the idea that violence results from a surplus of men who don’t have a good enough chance at mating with women has some worrying and problematic implications. It is, nevertheless, intuitively true within a culture of male entitlement, which is something that feminists have long observed – that male violence is the result (and the maintenance) of a patriarchal social order. Since patrilineage, and patrilocality in family structure specifically, are identified as the preconditions for preferential parental investment in males, the eradication of this social order is a necessary step in redressing the sex-ratio balance. The end of patrilineal traditions and patrilocality are also a step toward dismantling a culture of male entitlement more broadly. As a direct consequence, then, this strategy dismantles the structures supporting male entitlement itself at the same time as addressing the skewed sex ratio, and does not simply consist of  “giving the men more women to stop them fighting”.

It seems to me that a feminist account that names a culture of male entitlement as the cause for violent female oppression, and an evolutionary account that names structural entitlement systems as the cause for the mass devaluation/infanticide of female offspring are very much on the same page. This approach also very clearly illustrates the compatibility between evolutionary analysis and the socio-economic determinism that is fundamental to radical political thought, precisely by demonstrating how population-wide behaviour can directly result from external economic and social parameters, rather than some innately predisposed condition. We hope that this is at least one small demonstration of how evolutionary psychology and social justice can be rather natural allies.

Chimp Challenge at Edinburgh Zoo

We’re used to thinking of ourselves as smarter than other animals, but sometimes it looks like even chimpanzees can outsmart us.

A while ago, Justin Quillinan and I set up the Chimp Challenge. We were interested in a study by Inoue & Matsuzawa which demonstrated the amazing visual processing abilities of a chimpanzee named Ayumu. Ayumu played a game where he saw 9 numbers flash on a screen for 210 milliseconds. Apparently, he has no problem in remembering he location of each while humans find this very difficult. Now you can try this game for yourself at an interactive exhibit in Edinburgh Zoo. Get yourselves along to the Living Links site at the zoo and help us find out more about this phenomenon. Maybe you can beat Ayumu’s score?

The Chimp Challenge at Edinburgh Zoo

Inoue, S., & Matsuzawa, T. (2007). Working memory of numerals in chimpanzees Current Biology, 17 (23) DOI: 10.1016/j.cub.2007.10.027

10th International Conference on the Evolution of Language, 14th – 17th April 2014, Vienna: Call for Papers

The 10th International Conference on the Evolution of Language will take place in the beautiful capital of Austria, Vienna, from April 14th to April 17th 2014.

The plenary speakers are:

“Plenary Speakers

The Call for Papers can be found here (Deadline for paper & poster submission is September 1, deadline for workshop proposals April , 2013).

To quote from the website:

“The Evolang conference series provides the major meeting for researchers worldwide in the origins and evolution of language. The Evolang conferences are interdisciplinary, with contributions from disciplines including, but not limited to: anthropology, archeology, artificial life, biology, cognitive science, genetics, linguistics, modeling, paleontology, physiology, primatology, and psychology. Typically, about 300 delegates attend, with representatives from all these disciplines. Additional information on Evolang can be found here.”

More information can be found on the website

Language Evolution 101: Gene’s Eye vs. DST

Broad hypothese are better than narrow ones as they can be applied to a wider range of things. That’s probably a controversial thing to say, but it’s certainly true that the beauty of most evolutionary theory lies in its simplicity, and therefore its ability to be applied to more than just biology. So how do different evolutionary theories fair when applied to the world of language? I’ll look here at the gene’s eye view of evolution and developmental systems theory.

The gene’s eye view of evolution

The gene’s eye view of evolution splits evolution up into the two processes, replication and interaction. The replicators are the things which are copied (generally genes) and the interactors are the organisms which interact with their environment. In this post I will be sticking with the terms ‘replicator’ and ‘interactor’ as posited by Hull (1980) as opposed to Dawkins’ ‘replicator’ and ‘vehicle’ as Hull’s terms are much more applicable to language as Hull formalised it as a generalised theory which Hull himself has applied to cultural evolution (Hull 1988).

Maynard-Smith and Szathmáry (1995) argue that since language and the genome are recursive then only these two mechanisms have an infinite number of heritable states which is why a replicator view of natural selection can only account for these two mechanisms. Many Linguists have tried to apply a replicator view to the evolution of language, both with regards to language’s biological and cultural evolution. Regarding the cultural evolution of language, there seems to be many parallels with biological evolution which can be drawn with the controversy as to what can be considered a replicator. David Hull (1980) defines a replicator as “an entity that passes on its structure directly in replication”. Within language this could qualify anything which allows us to say the same thing in a different way. This means that replicators can lie at a phonemic level, in that vowels can vary and some realisations will be more successful than others with regards to contrastive difference from other vowels. Morphemes can also vary and be more selectively successful in terms of productivity. Selection can work all the way up to lexemes and syntax, both on a wide scale, or on a narrow scale, with a specific idiosyncratic structure emerging in some frequently used phrases. If one of two interlocutors in a communicative act uses an idiosyncratic structure to express something, and is successful in being understood, then they will see little point in changing the utterance next time they want to express that proposition, this, presumably, would ‘catch on’. Croft (2000) lumps all of these possible replicators under a general heading of ‘lingueme’ to make them more analogous with genes. This may be an oversimplification, as layers of structure as they appear in language are not present in the DNA sequence (or at least not understood to the same level as they are in language) past the distinction of nucleotides, codons and ‘genes’, and even upon this distinction it is usually argued that single nucleotides and codons cannot be replicators, whereas, it seems that the smallest particles of language structure can be.

Croft (2000) argues that the selection of linguistic replicators is driven by social factors as he claims that speakers select variants with regards to their social values. However, as in biology, selection where not only functional selection, but sexual selection and social selection, also exist, it seems odd that language evolution would not also be driven by a combination of factors, both functional and social.

Language does not pass purely from vertical transmission from one generation to the next, as genes do, horizontal transmission is also present and there is linguistic input from more than just the two parents of an individual. Horizontal gene transfer, which occurs when an organism acquires genetic material from a different organism, but not through the process of replication or reproduction, could be described as analogous to this but this certainly isn’t the norm within genetic evolution as it is in the transmission of language (Pagel, 2009).

Developmental Systems Theory

Developmental Systems Theory (DST) is an approach to evolution in opposition to replicator/interactor view of natural selection. It takes the position that more things need to be taken into account than just replicators and interactors and that if anything is the unit of selection then it is the entire developmental system an organism takes. This stresses the importance of non-genetic factors and their role in evolution. Many layers of structure need to be considered and each of these layers of structure can only be accounted for in their own terms. A DST approach to the emergence of language is one which takes the whole developmental cycle of language acquisition and communication into account. The learning biases of children certainly counts as a unique event which is responsible for individual differences in each generation. As well as this, the learning biases of adults can also contribute to language evolution from a DST approach in societies where there are many second language speakers (Wray and Grace 2005). Learning biases in transmission are often cited exclusively in the context of cultural evolution; however, learning biases have now come to give us a good explanation as to how linguistic constraints may have become genetically assimilated after cultural transmission occurred though mechanisms such as the Baldwin Effect (Baldwin, 1896). If there’s any call for it I’ll post a 101 on the Baldwin Effect in the near future.

Refs

Baldwin, M. J. (1896) A New Factor in Evolution. The American Naturalist,  Vol. 30, No. 354, 441-451.

Croft, W. (2000) Explaining language change: an evolutionary approach.  Harlow: Pearson.

Hull, D. L., (1980). Individuality and  Selection. Annual Review of Ecology and Systematics, 11: 311–332.

Hull, D. L. (1988) Science as a process: an evolutionary account of the  social and conceptual development of science. Chicago: University of  Chicago Press.

Maynard-Smith, J. and Szathmáry, E. (1995) The major transitions in  evolution.

Pagel, M. (2009). Human language as a culturally transmitted replicator. Nature Reviews Genetics10(6), 405-415.

Pinker, S. and P. Bloom (1990). Natural Language and Natural Selection.  Behavioral and Brain Sciences 13.4: 707-726.

Wray, A. and Grace, G. (2005) The consequences of talking to strangers:  Evolutionary corollaries of socio-cultural influences on linguistic  form. Lingua, 117 (3), 543-578

 

Most important paper on cultural evolution that includes acacia trees published

Last month saw the publication of a paper by James and I (our first paper!) on the so-called ‘nomothetic’ approach to links between language structure and social structure.  In it we review the recent trend of using large-scale cross-cultural statistical analyses to find links between cultural traits and social structures (e.g. Lupyan & Dale, 2010).  We show that statistical tests can be misleading because of the nature of cultural systems.  We also argue that using statistics alone does not provide strong explanatory power.  However, they can be a valuable part of a pluralistic approach to problems – especially generating hypotheses and as a catalyst for debate.  Other approaches can help support the suggestions made by nomothetic studies, such as experiments and models.

Perhaps as exciting, there are now some spurious correlations that are peer-reviewed!  These include the link between tonal languages and the presence of acacia trees, and word order being linked to the number of offspring parents have.

The paper is available here and is open access.  It’s part of a special issue on Language as a Tool for Interaction, and has some other interesting papers which I look forward to reading.

 

Sean Roberts, & James Winters (2012). Social Structure and Language Structure: the New Nomothetic Approach. Psycology of Language Learning, 16 (2), 89-112 : 10.2478/v10057-012-0008-6

Lupyan G, & Dale R (2010). Language structure is partly determined by social structure. PloS one, 5 (1) PMID: 20098492

Evolution in a Changing Environment

Following on from the Baronchelli et al paper a couple of months ago, PLOS ONE has published  “Evolution in a Changing Environment” by the same authors. The conclusions of the 2 papers both argue that if language is rapidly changing (and it is), then generalist, neutral genes, rather than specialist ones, are advantageous. This argues that language is likely more the result of general cognitive abilities as language change happens so rapidly. In contrast to the last paper though, this one focuses much less on (specifically) linguistic change, and features a super sexy stochastic interacting particle model (if you’re into that sort of thing).

Abstract:

We propose a simple model for genetic adaptation to a changing environment, describing a fitness landscape characterized by two maxima. One is associated with “specialist” individuals that are adapted to the environment; this maximum moves over time as the environment changes. The other maximum is static, and represents “generalist” individuals not affected by environmental changes. The rest of the landscape is occupied by “maladapted” individuals. Our analysis considers the evolution of these three subpopulations. Our main result is that, in presence of a sufficiently stable environmental feature, as in the case of an unchanging aspect of a physical habitat, specialists can dominate the population. By contrast, rapidly changing environmental features, such as language or cultural habits, are a moving target for the genes; here, generalists dominate, because the best evolutionary strategy is to adopt neutral alleles not specialized for any specific environment. The model we propose is based on simple assumptions about evolutionary dynamics and describes all possible scenarios in a non-trivial phase diagram. The approach provides a general framework to address such fundamental issues as the Baldwin effect, the biological basis for language, or the ecological consequences of a rapid climate change.

Baronchelli A, Chater N, Christiansen MH, Pastor-Satorras R (2013) Evolution in a Changing Environment. PLoS ONE 8(1): e52742. doi:10.1371/journal.pone.0052742

 

Berwick, Friederici, Chomsky, Bolhuis (2013): Evolution, brain, and the nature of language

UPDATE: This paper is now a Trends in Cognitive Sciences Free Featured Article and is available for free here

Noam Chomsky, who infamously stated that the field of language evolution research is “a burgeoning literature, most of which in my view is total nonsense” (see, e.g. here), has a new paper on the topic in press (together with linguist Robert Berwick and neuroscientists Angela Friederici and Johan Bolhuis) called Evolution, brain, and the nature of language (here, unfortunately it’s behind a paywall).

Here’s the abstract:

Language serves as a cornerstone for human cognition, yet much about its evolution remains puzzling. Recent research on this question parallels Darwin’s attempt to explain both the unity of all species and their diversity. What has emerged from this research is that the unified nature of human language arises from a shared, species-specific computational ability. This ability has identifiable correlates in the brain and has remained fixed since the origin of language approximately 100 thousand years ago. Although songbirds share with humans a vocal imitation learning ability, with a similar underlying neural organization, language is uniquely human.

Also interesting is their figure on the Desing of the language system:

Full-size image (42 K)

“The basic design of language. There are three components: syntactic rules and representations, which, together with lexical items, constitute the basis of the language system, and two interfaces through which mental expressions are connected to the external world (external sensory-motor interface) and to the internal mental world (internal conceptual-intentional interface).”

This still looks very much like the model advocated in for example, the influential and controversial Hauser/Chomsky/Fitch 2002 Science paper (see e.g. here) and from a brief look through the review. The paper also reiterates the view that language is primary an instrument aiding internal thought, and its use for communication is a later by-product (a view that has been thouroughly criticized, by for example Steven Pinker and Ray Jackendoff, e.g. here):

“communication, an element of externalization, is an ancillary aspect of language, not its key function, as maintained by what is perhaps a majority of scholars (cf. [Jim Hurford, Michael Tomasello], among many others). Rather, language serves primarily as an internal ‘instrument of thought’”

Corpus Linguistics, Literary Studies, and Description

One of my main hobbyhorses these days is description. Literary studies has to get a lot more sophisticated about description, which is mostly taken for granted and so is not done very rigorously. There isn’t even a sense that there’s something there to be rigorous about. Perhaps corpus linguistics is a way to open up that conversation.
The crucial insight is this: What makes a statement descriptive IS NOT how one arrives at it, but the role it plays in the larger intellectual enterprise.

A Little Background Music

Back in the 1950s there was this notion that the process of aesthetic criticism took the form of a pipeline that started with description, moved on to analysis, then interpretation and finally evaluation. Academic literary practice simply dropped evaluation altogether and concentrated its efforts on interpretation. There were attempts to side-step the difficulties of interpretation by asserting that one is simply describing what’s there. To this Stanley Fish has replied (“What Makes an Interpretation Acceptable?” in Is There a Text in This Class?, Harvard 1980, p. 353):

 

The basic gesture then, is to disavow interpretation in favor of simply presenting the text: but it actually is a gesture in which one set of interpretive principles is replaced by another that happens to claim for itself the virtue of not being an interpretation at all.

 

And that takes care of that.
Except that it doesn’t. Fish is correct in asserting that there’s no such thing as a theory-free description. Literary texts are rich and complicated objects. When the critic picks this or that feature for discussion those choices are done with something in mind. They aren’t innocent.
But, as Michael Bérubé has pointed out in “There is Nothing Inside the Text, or, Why No One’s Heard of Wolfgang Iser” (in Gary Olson and Lynn Worsham, eds. Postmodern Sophistries, SUNY Press 2004, pp. 11-26) there is interpretation and there is interpretation and they’re not alike. The process by which the mind’s eye makes out letters and punctuation marks from ink smudges is interpretive, for example, but it’s rather different from throwing Marx and Freud at a text and coming up with meaning.
Thus I take it that the existence of some kind of interpretive component to any description need not imply that the necessity of interpretation implies that it is impossible to descriptively carve literary texts at their joints. And that’s one of the things that I want from description, to carve texts at their joints.
Of course, one has to know how to do that. And THAT, it would seem, is far from obvious.