Language is not necessary for analogy

Analogy is a trait thought to be uniquely human and the origin is largely unknown. Recent studies have suggested that some language trained apes can find relations between relations, which is thought to be what is at the root of analogy. However, a new study in the journal  Psychological Science  has tested baboons using shapes with matching features. These baboons were able to match pairs which had matching features and pairs which had no matching features.

The study was run by Joël Fagot of the Laboratoire de Psychologie Cognitive (CNRS/Université de Provence) and Roger Thompson of the Franklin & Marshall College (United States).

It has been hypothesised in the past that finding relations between relations is an ability only accessible by language, but these new findings with baboons cast doubt on this assertion.

The experiments were carried out on 29 baboons. The baboons were first shown two shapes on a screen. The baboons then touched one of these shapes and two other pairs of shapes appeared on the screen. To be successful at the task the baboons had to touch the pair representing the same relation as the initial pair. So if the first pair matched in a feature the baboon had to choose the pair which also had a matching feature, and avoid the pair where there was no matching feature, in order to gain a reward. This shows the inherent abilities behind analogy.

6 baboons correctly performed the task after thousands of trials of training showing that it is definitely within the abilities of old world monkeys to resolve analogy problems.

The researchers also revisited the same baboons with the same task a year later and the monkeys were much quicker at acquiring the task showing that they remembered what to do.

These results show that language is not necessary for analogy and leaves questions as to what might make this ability adaptive.

Reference

Fagot J, & Thompson RK (2011). Generalized Relational Matching by Guinea Baboons (Papio papio) in Two-by-Two-Item Analogy Problems. Psychological science PMID: 21934135

Degeneracy, Evolution and Language

Having had several months off, I thought I’d kick things off by looking at a topic that’s garnered considerable interest in evolutionary theory, known as degeneracy. As a concept, degeneracy is a well known characteristic of biological systems, and is found in the genetic code (many different nucleotide sequences encode a polypeptide) and immune responses (populations of antibodies and other antigen-recognition molecules can take on multiple functions) among many others (cf. Edelman & Gally, 2001). More recently, degeneracy is appreciated as having applications in a wider range of phenomena, with Paul Mason (2010) offering the following value-free, scientific definition:

Degeneracy is observed in a system if there are components that are structurally different (nonisomorphic) and functionally similar (isofunctional) with respect to context.

A pressing concern in evolutionary research is how increasingly complex forms “are able to evolve without sacrificing robustness or the propensity for future beneficial adaptations” (Whitcare & Bender, 2010). One common solution is to refer to redundancy: duplicate elements that have a structure-to-function ratio of one-to-one (Mason, 2010). Nature does redundancy well, and is exemplified by the human body: we have two eyes, two lungs, two kidneys, and so on. Still, even with redundant components, selection in biological systems would result in a situation where competitive elimination leads to the eventual extinction of redundant variants (ibid).

Continue reading “Degeneracy, Evolution and Language”

Confrontational scavenging as a possible source for language and cooperation

New language/cooperation paper by Bickerton and Szathmáry today. What a dream team. The best news is that it’s open access. WOO! GO OPEN ACCESS!

Here’s the abstract:

The emergence of language and the high degree of cooperation found among humans seems to require more than a straightforward enhancement of primate traits. Some triggering episode unique to human ancestors was likely necessary. Here it is argued that confrontational scavenging was such an episode. Arguments for and against an established confrontational scavenging niche are discussed, as well as the probable effects of such a niche on language and co-operation. Finally, several possible directions for future research are suggested.

Here’s a link:

http://www.biomedcentral.com/content/pdf/1471-2148-11-261.pdf

Should Mother Tongue be Father Tongue?

A new paper, published in Science last week, has reviewed some of the correlations which suggest that language change may be subject to sex-specific transmission. This has been discovered through looking at Y-chromosome DNA types. Modern male DNA (Y-Chromosome) is found to be the DNA from the population who originally spoke the language which has survived, whereas modern female DNA is often not the DNA of the population which spoke the language which has survived.

This evidence has come from, among others, a study by Chaubey (2011) with evidence for the Indian subcontinent. Austroasiatic languages are spoken by tribes with a high proportion of immigrant Y-chromosome DNA from East Asia, but with a high percentage of local female (mitochondrial) DNA. This pattern was also true of the Tibeto-Burman language family in northeastern India.

Other studies found matching correlations in Africa and found that Niger-Congo languages correlate with Y-Chromosome types, but the female DNA, which correlated more with geography (Wood et al. (2005) and de Filippo et al. (2011)).

Sex-biased language change can also be seen in the expansion of the Malayo-Polynesians in New Guinea. New Guinea has populations of Malayo-Polynesian speakers and also populations of Melanesian speakers. Malayo-Polynesian female DNA is about the same in both Malayo-Polynesian speaking areas and Melanesian speaking areas. However, the Malayo-Polynesian Y-Chromosome is found way more in the Malayo-Polynesian speaking areas than the Melanesian speaking areas.

This pattern is also seen in Iceland where the female DNA is mainly British, but the Y-chromosome is mainly Scandinavian. This follows the pattern because the Icelandic language is also Scandinavian.

Forster and Renfrew (authors of the Science paper) show that these findings complement studies such as Stoneking and Delfin who found that in East Asia, it is women who move after marriage rather than men. This means that if a man and woman migrate to a populated area their female offspring will move to other villages when married but their male offspring will remain static meaning that their language will stay in the same place as their Y-Chromosomes.

Is this the only mechanism at work when correlations of sex-specific language change can be seen? Others have hypothesized things such as farming and trade might be a factor. Groups of emigrating agriculturalists may also contribute where men outnumber women and take wives from the local community they were moving to. Men are also biologically capable of passing on and spreading about much more of their DNA than women can. It may also be the case that it is the father’s language rather than the mother’s which will be dominant within a family but I think more research would have to be done on this.

Interestingly the opposite correlation to the ones seen above is seen in Greenland where both the language and female DNA is Eskimo but the Y-Chromosome DNA is European.

Cooperation and Conflict Colloqium papers

Papers from the “In the Light of Evolution V:  Cooperation and Conflict” edition of the Sackler Colloquium are now available in the early edition of PNAS:

http://www.pnas.org/search?tocsectionid=In+the+Light+of+Evolution+V:+Cooperation+and+Conflict+Sackler+Colloquium&sortspec=date&submit=Submit

Some papers such as “The cultural niche: Why social learning is essential for human adaptation”, “Genomic imprinting and the evolutionary psychology of human kinship” and “Evolutionary foundations of human prosocial sentiments” may be of interest to the reader of the blog.

 

You can read the earlier “In the light of Evolution” collections here:

In the Light of Evolution IV: The Human Condition: http://www.pnas.org/content/107/suppl.2

In the Light of Evolution III: Two Centuries of Darwin: http://www.pnas.org/content/106/suppl.1

In the Light of Evolution II: Biodiversity and Extinction: http://www.pnas.org/content/105/suppl.1

In the Light of Evolution I: Adaptation and Complex Design: http://www.pnas.org/content/vol104/suppl_1/

Laryngeal Air Sacs

So, I got a request from a friend of mine to make an abstract on the fly for a poster for Friday. I stayed up until 3am and banged this out. Tonight, I hope to write the poster justifying it into being. A lot of the work here builds on Bart de Boer’s work, with which I am pretty familiar, but much of it also started with a wonderful series of posts over on Tetrapod Zoology. Rather than describe air sacs here, I’m just going to link to that – I highly suggest the series!

Here’s the abstract I wrote up, once you’ve read that article on air sacs in primates. Any feedback would be greatly appreciated – I’ll try to make a follow-up post with the information that I gather tonight and tomorrow morning on the poster, as well.

Re-dating the loss of laryngeal air sacs in hominins

Laryngeal air sacs are a product of convergent evolution in many different species of primates, cervids, bats, and other mammals. In the case of Homo sapiens, their presence has been lost. This has been argued to have happened before Homo heidelbergensis, due to a loss of the bulla in the hyoid bone from Austrolopithecus afarensis (Martinez, 2008), at a range of 500kya to 3.3mya. (de Boer, to appear). Justifications for the loss of laryngeal air sacs include infection, the ability to modify breathing patterns and reduce need for an anti-hyperventilating device (Hewitt et al, 2002), and the selection against air sacs as they are disadvantageous for subtle, timed, and distinct sounds (de Boer, to appear). Further, it has been suggested that the loss goes against the significant correlation of air sac retention to evolutionary growth in body mass (Hewitt et al., 2002).

I argue that the loss of air sacs may have occurred more recently (less than 600kya), as the loss of the bulla in the hyoid does not exclude the possibility of airs sacs, as in cervids, where laryngeal air sacs can herniate between two muscles (Frey et al., 2007).  Further, the weight measurements of living species as a justification for the loss of air sacs despite a gain in body mass I argue to be unfounded given archaeological evidence, which suggests that the laryngeal air sacs may have been lost only after size reduction in Homo sapiens from Homo heidelbergensis.

Finally, I suggest two further justifications for loss of the laryngeal air sacs in homo sapiens. First, the linguistic niche of hunting in the environment in which early hominin hunters have been posited to exist – the savannah – would have been better suited to higher frequency, directional calls as opposed to lower frequency, multidirectional calls. The loss of air sacs would have then been directly advantageous, as lower frequencies produced by air sac vocalisations over bare ground have been shown to favour multidirectional over targeted utterances (Frey and Gebler, 2003). Secondly, the reuse of air stored in air sacs could have possibly been disadvantageous toward sustained, regular heavy breathing, as would occur in a similar hunting environment.

References:

Boer, B. de. (to appear). Air sacs and vocal fold vibration: Implications for evolution of speech.

Fitch, T. (2006). Production of Vocalizations in Mammals. Encyclopedia of Language and Linguistics. Elsevier.

Frey, R, & Gebler, A. (2003). The highly specialized vocal tract of the male Mongolian gazelle (Procapra gutturosa Pallas, 1777–Mammalia, Bovidae). Journal of anatomy, 203(5), 451-71. Retrieved June 1, 2011, from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1571182&tool=pmcentrez&rendertype=abstract.

Frey, Roland, Gebler, Alban, Fritsch, G., Nygrén, K., & Weissengruber, G. E. (2007). Nordic rattle: the hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus). Journal of Anatomy, 210(2), 131-159. doi: 10.1111/j.1469-7580.2006.00684.x.

Martínez, I., Arsuaga, J. L., Quam, R., Carretero, J. M., Gracia, a, & Rodríguez, L. (2008). Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain). Journal of human evolution, 54(1), 118-24. doi: 10.1016/j.jhevol.2007.07.006.

Hewitt, G., MacLarnon, A., & Jones, K. E. (2002). The functions of laryngeal air sacs in primates: a new hypothesis. Folia primatologica international journal of primatology, 73(2-3), 70-94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12207055.


Sound good? I hope so! That’s all for now.

Statistics and Symbols in Mimicking the Mind

MIT recently held a symposium on the current status of AI, which apparently has seen precious little progress in recent decades. The discussion, it seems, ground down to a squabble over the prevalence of statistical techniques in AI and a call for a revival of work on the sorts of rule-governed models of symbolic processing that once dominated much of AI and its sibling, computational linguistics.

Briefly, from the early days in the 1950s up through the 1970s both disciplines used models built on carefully hand-crafted symbolic knowledge. The computational linguists built parsers and sentence generators and the AI folks modeled specific domains of knowledge (e.g. diagnosis in elected medical domains, naval ships, toy blocks). Initially these efforts worked like gang-busters. Not that they did much by Star Trek standards, but they actually did something and they did things never before done with computers. That’s exciting, and fun.

In time, alas, the excitement wore off and there was no more fun. Just systems that got too big and failed too often and they still didn’t do a whole heck of a lot.

Then, starting, I believe, in the 1980s, statistical models were developed that, yes, worked like gang-busters. And these models actually did practical tasks, like speech recognition and then machine translation. That was a blow to the symbolic methodology because these programs were “dumb.” They had no knowledge crafted into them, no rules of grammar, no semantics. Just routines the learned while gobbling up terabytes of example data. Thus, as Google’s Peter Norvig points out, machine translation is now dominated by statistical methods. No grammars and parsers carefully hand-crafted by linguists. No linguists needed.

What a bummer. For machine translation is THE prototype problem for computational linguistics. It’s the problem that set the field in motion and has been a constant arena for research and practical development. That’s where much of the handcrafted art was first tried, tested, and, in a measure, proved. For it to now be dominated by statistics . . . bummer.

So that’s where we are. And that’s what the symposium was chewing over.

Continue reading “Statistics and Symbols in Mimicking the Mind”

The Gestural Repertoire of the Wild Chimpanzee

In the past many studies have been done on the linguistic abilities of trained apes using artifical languages, but what about in the wild?

Catherine Hobaiter and Richard W. Byrne at the University of St. Andrews have carried out a new study looking at the intentional gestures of chimpanzees in the wild.

Whilst it is generall agreed that gestural communication in great apes as seen in the wild is intentional and elaborate and flexible the authors outline that there is still a lot of controversy with regards to interpretation of the system and how the apes acquire it. These questions are hard to untangle when studied in the captive settings of a zoo.

The study presents a systematic analysis of the gestures made by a population of chimpanzees in the wild. 4,397 cases of intentional gesture were recorded in Budongo, Uganda.

These recordings were used to identify 66 gesture types. These gestures were seen to differ between individuals and also between age classes. Regardless of these differences no gesture was used only by one individual. I worried when I first read this as sometime studies identify intentional gestures by using the criteria that the gestures were used in the same context a certain number of times, however, within this study the criteria for intention gesture was as follows:

Audience checking: The signaller shows signs of beingaware of the potential recipients and their state ofattention, e.g. turning to look at the recipient beforegesturing.

Response waiting: The signaler pauses at the end of thecommunication and maintains some visual contact.

Persistence: The production of further gestures, afterresponse waiting and in the absence of a response that in other cases is taken as satisfactory. (In certain circumstances, such persistence might be impossible, for example where an adult carries an infant away; these cases are marked as unable to persist, rather than nopersistence.)

The authors argue that these gestures are not acquired by ‘ontogenetic ritualization’, which is when actions which are performed to reach some goal become ritualised to the point that they can be anticipated from an intial gesture sequence. The authors carried out detailed analyses of two gestures to show that the action elements which the gestures were made up from did not match those of the original actions.

This lack of ontogenetic ritualisation may be down to these gestures being species-typical, or typical across all the great apes. Comparisons made with the recorded gestured of gorillas and orangutans show that chimpanzee overlap with at least 24 gestures which are recorded in all three species. Dr Hobaiter is cited as saying on the BBC story that:

“the gestures that apes use (and maybe some human gestures too) are derived from ancient shared ancestry of all the great ape species alive today.”

The gestures were also able to be used flexibly across contexts and were able to adjust to the audience, for example the chimps were shown giving silent gestures when their audience was attentive and used contact in their gestures when the audience was inattentive.

The paper includes extensive analysis of repertoire size across age groups, contexts each gesture type was used in as well as things like hand position and shape during gestures.

This is the first study of its type using a wild population of chimpanzees. It shows highly intentional use of a species-typical repertoire which seems surprising and certainly contributes evidence relating to the evolution of intentional communication.

Reference

Catherine Hobaiter and Richard W. Byrne (2011) The gestural repertoire of the wild chimpanzee. ANIMAL COGNITION. DOI: 10.1007/s10071-011-0409-2

 

Does Language Shape Thought? Different Manifestations of the Idea of Linguistic Relativity (I)

Does the language we speak influence or even shape the way we think? Last December, there was an interesting debate over at The Economist website with Lera Boroditsky defending the motion, and Language Log’s Mark Liberman against the motion (who IMO, both did a very good job).
The result of the online poll was quite clear: 78% agreed with the motion, while 22% disagreed.

There are, however, three main problems with this way of framing the question: First, it’s not really clear what ‘language’ really is, second, the same goes for “thought”, and third, there are many many ways of how “influencing” and “shaping” something can be conceptualized.
In this post I want to focus on the third problem and present a very useful classification system for hypotheses about linguistic relativity outlined in an article by Phillip Wolff and Kevin J. Holmes, which was published in the current issue Wiley Interdisciplinary Review: Cognitive Science.

Continue reading “Does Language Shape Thought? Different Manifestations of the Idea of Linguistic Relativity (I)”

Cultural bottlenecks leads to Diversity in Birdsong

A new study has been conducted on dialect formation in birds:

Native North Island saddlebacks have developed such distinctive new songs in the past 50 years that it is not clear if birds on one island recognise what their neighbours are singing about, a Massey University study shows.

The phenomenon is an avian equivalent of the way human language develops regional accents and dialects as people migrate and settle in new locations, and provides fresh insights into how species evolve, says biology researcher Dr Kevin Parker, from the Institute of Natural Sciences at Albany.

I can’t find any published article but the press release is here.