Wild Replicator’s Got Funky Rhythm, Part 2

As its name indicates, this post builds on Wild Replicator’s Got Funky Rhythm, Part 1. I want to call your attention, in particular, to the next to the last section, Becoming Memetic. There I trace, albeit sketchily, the history of Rhythm Changes. The point is that Rhymthm Changes didn’t exist as a memetic entity in 1930, when George Gershwin wrote “I Got Rhythm.” Just when the chord changes had become differentiated from the song itself is not clear. But it had certainly happened, at least in the jazz world, by the mid 1940s. Thus, it is not as though certain patterns are essentially memetic while others are not. It’s a question of how the patterns function in the cultural system.

* * * * *

In the previous post I took a look at Rhythm Changes, a memetic entity that has played an important role in jazz and, in particular, in bebop. FWIW, Rhythm Changes has also been used in the theme song for well-known some well-known cartoons, Woody Woodpecker and The Flintstones. In this post I want to do several things:

  • consider all the elements of “I Got Rhythm,” rather than just the chord changes,
  • think briefly about how pools of memetic elements function in defining musical styles, and
  • look briefly at how the chord changes to Gershwin’s tune became memetically active.

Taken together those discussions flesh out the role of memetic elements in music systems in the large. I conclude by

  • examining this discussion of memes in music in the context of a recent article by Evelyn Fox Keller and David Harel, Beyond the Gene, and not some broad thematic similarities between their discussion and mine.

I Got Rhythm, Whole

As I’ve indicated, Rhythm Changes is derived from, abstracted from, George Gershwin’s “I Got Rhythm.” Now let’s think about the whole tune, not just its harmonic trajectory, i.e. Rhythm Changes. In addition to that trajectory we also have a specific melody, the lyrics, the rhythmic framework, and the arrangement. The lyrics are optional; the tune can be performed without them, and among jazz musicians that is the typical, if not universal, performance practice. Note, however, that any consideration of the lyrics brings a whole other memetic field into consideration, that of language. Continue reading “Wild Replicator’s Got Funky Rhythm, Part 2”

Nothing in Language Makes Sense…

… Except in the Light of Biological and Cultural Evolution

Sean mentioned in one of his many Evolang posts that, based on de Boer’s talk, the real audience for researchers of cultural evolution should be biologists. Well, deciding that actions plus words can work far better together, I decided to get in contact with Jeremy Yoder of the excellent group blog, Nothing in Biology Makes Sense. The result: an introductory post on the biological and cultural evolution of language called Crossing Those Curious Parallels (after Darwin’s famous passage describing the similarities between linguistic and biological change). Most regular readers will be familiar with the content and argument as the article is a pastiche of earlier pieces I wrote on this blog, but there is a sprinkling of some original paragraphs here and there. So feel free to go over, leave a comment and help foster some cross-disciplinary discussions. Actually, on cross-disciplinary note: since physicists seem so keen to solve problems in linguistics, maybe we should lend them a hand and run a corpus analysis to discover that elusive mass of the Higgs boson.

 

 

In Search of the Wild Replicator


The key to the treasure is the treasure.
– John Barth

In view of Sean’s post about Andrew Smith’s take on linguistic replicators I’ve decided to repost this rather longish note from New Savanna. I’d orignally posted it in the Summer of 2010 as part of a run-up to a post on cultural evolution for the National Humanities Center (USA); I’ve collected those notes into a downloadable PDF. Among other things the notes deal with William Croft’s notions (at least as they existed in 2000) and suggests that we’ll find language replicators on the emic side of the emic/etic distinction.

I’ve also appended some remarks I made to John Lawler in the subsequent discussion at New Savanna.

* * * * *
There’s been a fair amount of work done on language from an evolutionary point of view, which is not surprising, as historical linguistics has well-developed treatments of language lineages and taxonomy, the “stuff” of large-scale evolutionary investigation. While this work is directly relevant to a consideration of cultural evolution, however, I will not be reviewing or discussing it. For it doesn’t deal with the theoretical issues that most concern me in these posts, namely, a conceptualization of the genetic and phenotypic entities of culture. This literature is empirically oriented in a way that doesn’t depend on such matters.

The Arbitrariness of the Sign

In particular, I want to deal with the arbitrariness of the sign. Given my approach to memes, that arbitrariness would appear to eliminate the possibility that word meanings could have memetic status. For, as you may recall, I’ve defined memes to be perceptual properties – albeit sometimes very complex and abstract ones – of physical things and events. Memes can be defined over speech sounds, language gestures, or printed words, but not over the meanings of words. Note that by “meaning” I mean the mental or neural event that is the meaning of the word, what Saussure called the signified. I don’t mean the referent of the word, which, in many cases, but by no means all, would have perceptible physical properties. I mean the meaning, the mental event. In this conception, it would seem that that cannot be memetic.

That seems right to me. Language is different from music and drawing and painting and sculpture and dance, it plays a different role in human society and culture. On that basis one would expect it to come out fundamentally different on a memetic analysis.

This, of course, leaves us with a problem. If word meaning is not memetic, then how is it that we can use language to communicate, and very effectively over a wide range of cases? Not only language, of course, but everything that depends on language. Continue reading “In Search of the Wild Replicator”

Evolang coverage: Animal Communication and the Evolution of Language

Are there more differences or more similarities between human language and other animal communication systems? And what exactly does it tell us if we find precursors and convergent evolution of aspects similar to human language? These were some of the key questions at this year’s Evolang’s Animal Communication and Language Evolution Workshop (proceedings for all workshops here).

As Johan Bolhuis pointed out, ever since Darwin (1871), comparing apes and humans’ seemed like the most logical thing to do when trying to find out more about the evolution of traits presumed to be special to humans. Apes and especially chimpanzees, so the reasoning goes, are after all our closest relatives and serve as the best models for the capacities of our prelinguistic hominid ancestors. The comparative aspects of language have gained new attention since the controversial Hauser, Chomsky, Fitch (2002) paper in Science. For example, their claim that the capacity for producing and understanding recursive embedding of a certain kind is uniquely human was taken up by some researchers (including Hauser and Fitch themselves) who looked for syntactic abilities in other animals. More recently, songbirds have also become a centre of attention in the animal communication literature, with pretty much everything being quite controversial, however.

What is important here, according to the second workshop organizer Kazuo Okanoya, is that when doing research and theorizing, we should not treat humans as a special case, but as on a continuum with animals. And this also holds for language. In explaining language evolution, we don’t want to speak of a sudden burst that gave us something that is wholly different from anything else in the animal kingdom, but more of a continuous transition and emergence of language. For this it is, important to study other animals in closer details if we are to arrive at a continuous explanation of language emergence. Granted, humans are special. But simply saying they are special isn’t scientific. We need to detail in what ways humans are special.

Regarding the central question whether there are more differences or similarities between language and animal communication, and what exactly these similarities and differences are, opinions of course differ. After the first speaker didn’t turn up Irene Pepperberg gave an impromptu talk on her work with parrots. Taking the example of a complex exclusion task, she argued that symbol-trained animals can do things other animals simply cannot, and that this might be tied to the complex cognitive processing that occurs during language (and vocal) learning. She also stressed that birds can serve as good models for the evolution of some aspects underlying language because they developed broadly similar vocal learning capacities like humans in a process referred to as parallel evolution, convergence, or analogy. Responding to other prevalent criticism, Pepperberg counters the view that animals like Alex and Kanzi are simply exceptional and unique, just like not every human is a Picasso or a Beethoven. What Picasso and Beethoven show us is what humans can be capable of, and the same holds for animals and Alex and Kanzi. No one would argue that animals have language in the sense that humans do. But given that they have the brain structures and cognitive capacities to allow a more complicated vocal learning and complicated cognitive processing means we can use them as a model of how these processes might have got started. There is still much work to be done, especially questions like what animals like parrots actually need and use these complex vocal and cognitive capacities for in the wild.

Whereas Dominic Mitchell argued in his talk that there is indeed a discontinuity between animal communication and human language with reference to animal signaling theory (e.g. Krebs & Dawkins 1984), Ramon Ferrer-i-Cancho after him focused more on the similarities. Specifically, he showed quite convincingly that statistical patterns in language, like Zipf’s law, the law of brevity, the law that more frequent words are shorter, and the Menzerath-Altmann law (the longer the words the shorter the syllables) can also be found in the communicative behaviours of other animals. Zipf’s law for word frequencies, for example, can also be observed in the whistles of bottlenose dolphins. A criticism of Zipf’s law in the Chomskyan tradition holds that it just as well applies to random typing and rolling the dice, but Ferrer-i-Cancho showed that it is simply not the case by plotting the actual distribution of random typing and rolling the dice which is actually quite different from the logarithmic distribution of Zipf’s law if you look at it in any detail. The law that more frequent words are shorter can also be found in Chickadee calls, Formosan macaques and Common marmosets. There is some controversy whether this law really holds for all of these species, especially common marmosets, but Ferrer-i-Cancho presented a reanalysis of criticism in which he showed that what there are no “true exceptions” to the law. He proposes an information theoretic explanation for these kinds of behavioural universals where communicative solutions converge on a local optimum of differing communicative demands. He also proposes that considerations like this should lead us to change our perspective and concepts of universals quite radically, and that instead of looking only for linguistic universals we should also look for universals of communicative behavior and universal principles beyond human language such as cognitive effort minimization and mean code length minimization.

Returning to birds, Johan J. Bolhius picked the issue of similarities and differences up again and showed that there is in fact a staggering amount of similarities between birds and humans. For example, songbirds also learn their songs from a tutor (most often their father) and make almost perfect copies of their songs. As Hauser, Chomsky, Fitch 2002 have already pointed out, this signal copying seems not to be present in apes and monkeys. But the similarities go even further than that: Songbirds “babble” before they can sing properly (a period called ‘subsong’) and they also have a sensitive period for learning. And there are not only behavioural, but also neural similarities. In fact, songbirds seem to have a neural organization, broadly similar to the human separation between Broca’s area (mostly concerned with production, although this simple view of course is not the whole story, as James, for example, has shown) and Wernicke’s area (mostly concerned with understanding). So there seem to be regions that are exclusively activated when animals hears songs (kinda Wernicke-Type region) and regions with neuronal activation when animals sing, something which is called the ‘song system. Interestingly, this activation is also related to how much the animal has learned about that particular song it is hearing, so the better it knows the song the more activation is there. This means that this regions might be related to song memory. In lesion studies, where these regions involved in listening to a known song were damaged, recognition of the songs were indeed impaired but not wholly wiped out. Song production, on the other hand was completely unimpaired, mirroring the results from patients with lesions to either Broca’s or Wernicke’s areas. Zebra finches also show some degree of lateralization in that there is stronger activation in the left hemisphere when they hear the song they know, but not when the song they hear is unfamiliar. Although FOXP2 is not a “language gene”, which can’t be stressed enough, it is interesting that songbirds in which the bird-FOXP2-gene was “knocked out” show incomplete learning of the tutor songs.

Overall, Bolhuis concludes that what we can learn from looking at birdsong is that there are three significant factors evolved in the evolution of language:

Homology in the neural and genetic mechanisms due to our shared evolutionary past with birds.

Convergences or parallel evolution of auditory-vocal learning

And last specialisations, specifically human language syntax, which as Bolhuis argued in a paper with Bob Berwick and Kazuo Okanoya is still vastly different in complexity and hierarchical embedding from everything in songbird vocal behavior.

This focus on syntactic ability stems of course from a generativist perspective on these issues, and future research, especially from new and up-and-coming linguistic schools like Cognitive Linguistics and Construction Grammar (cf. Hurford 2012) is sure to bring more light into the matter of how exactly human language works, what kinds of elements and constructions it is made of, and how these compare to what is found in animals, and whether there really a single unitary thing like the fabled “syntactic ability” of humans (cf. e.g.work by Ewa Dabrowska)

 

Evolang Previews: Cognitive Construal, Mental Spaces, and the Evolution of Language and Cognition

Evolang is busy this year – 4 parallel sessions and over 50 posters. We’ll be posting a series of previews to help you decide what to go and see. If you’d like to post a preview of your work, get in touch and we’ll give you a guest slot.

Michael Pleyer Cognitive Construal, Mental Spaces, and the Evolution of Language and Cognition Poster Session 1, 17:20-19:20, “Hall” (2F), 14th March

Perspective-taking and -setting in language, cognition and interaction is crucial to the creation of meaning and to how people share knowledge and experiences. As I’ve already written about on this blog (e.g. herehere, here), it probably also played an important part in the story of how human language and cognition came to be. In my poster presentation I argue that a particular school of linguistic thought, Cognitive Linguistics (e.g. Croft & Cruse 2004; Evans & Green 2006; Geeraerts & Cuyckens 2007; Ungerer & Schmid 2006), has quite a lot to say about the structure and cognitive foundations of perspective-taking and -setting in language.

Therefore an interdisciplinary dialogue between Cognitive Linguistics and research on the evolution of language might prove highly profitable. To illustrate this point, I offer an example of one potential candidate for such an interdisciplinary dialogue, so-called Blending Theory (e.g. Fauconnier & Turner 2002), which, I argue,  can serve as a useful model for the kind of representational apparatus that needed to evolve in the human lineage to support linguistic interaction. In this post I will not say much about Blending Theory (go see my poster for that 😉 or browse here ), but I want to  elaborate a bit on Cognitive Linguistics and why it is a promising school of thought for language evolution research, something which I also elaborate on in my proceedings paper.

So what is Cognitive Linguistics?

Evans & Green (2006: 50), define Cognitive Linguistics as

“the study of language in a way that is compatible with what is known about the human mind, treating language as reflecting and revealing the mind.”

Cognitive Linguistics sees language as tightly integrated with human cognition. What is more, a core assumption of Cognitive Linguistics is that principles inherent in language can be seen as instantiations of more general principles of human cognition. This means that language is seen as drawing on mechanisms and principles that are not language-specific but general to cognition, like conceptualisation, categorization, entrenchment, routinization, and so forth.

From the point of view of the speaker, the most important function of language is that it expresses conceptualizations, i.e. mental representations. From the point of view of the hearer, linguistic utterances then serve as prompts for the dynamic construction of a mental representation. Crucially, this process of constructing a mental representation is fundamentally tied to human cognition and our knowledge of the world around us. Continue reading “Evolang Previews: Cognitive Construal, Mental Spaces, and the Evolution of Language and Cognition”

Everett, Pirahã and Recursion: The Latest

Discussing the concept of recursion is like a rite of passage for anyone interested in language evolution: you go through it once, take a position and hope it doesn’t come back to haunt you.  As Hannah pointed out last year, there are two definitions of recursion:

(1) embeddedness of phrases within other phrases, which entails keeping track of long-distance dependencies among phrases;

(2) the specification of the computed output string itself, including meta-recursion, where recursion is both the recipe for an utterance and the overarching process that creates and executes the recipe.

The case of grammatical recursion (see definition 1) is perhaps most famously associated with Noam Chomsky. Not only does he claim all human languages are recursive, but also that this ability is biologically hardwired as part of our genetic makeup. Countering Chomsky’s first claim is the debate surrounding a small Amazonian tribe called the Pirahã: even though they show signs of recursion, such as the ability to recursively embed structures within stories, the Pirahã grammar is claimed not to recursively embed phrases within other phrases. If true, then are numerous implications for a wide variety of fields in linguistics, but this is still an unsubstantiated claim: for the most part, we are relying on one specific researcher (Daniel Everett) who, despite having dedicated a large portion of his life to studying the tribe, could very well have been misled. That said, I retain a large amount of respect for Everett, having watched him speak at Edinburgh a few years ago and read his book on the topic: Don’t Sleep, There are Snakes: Life and Language in the Amazonian Jungle.

So, why am I rambling on about recursion? Well, besides its obvious relevance, — and perhaps under-representation on this blog (deserved or not, I’ll let you decide) — Everrett has recently published a series of slides about a corpus study of Pirahã grammar (see below).

[gview file=”http://tedlab.mit.edu/tedlab_website/researchpapers/piantadosi_et_al_piraha_lsa_2012.pdf”]

His tentative conclusion: there is no strong evidence for recursion among relative clauses, complement clauses, possessive structures and conjunctions/disjunctionsHowever, there is possible evidence of recursive structure in topics/repeated arguments. He also posits cultural pressures for longer or shorter sentences, such as writing systems (as I mentioned way back in 2009).

I’m sure this debate will be brought to the fore at this year’s EvoLang, with Chomsky Berwick Piattelli-Palmarini and many of the Biolinguistic crowd in attendance, and it’s a shame I’ll almost certainly miss it (unless someone wants to pay for my ticket… Just hit the donate button in the left-hand corner 😉 ).

Continue reading “Everett, Pirahã and Recursion: The Latest”

Animal Cognition & Consciousness (II): Metacognition & Mentalizing

As I wrote in my last post, three kinds of behaviours are most often discussed in debates about animal consciousness and cognition:

“1. Mirror self-recognition

2. Tests of metacognition;

3. Metacognition of others’ mental states” (Gómez 2009: 45)

After having discussed the first capacitiy in my previous post, I will discuss the latter two in this post, starting with metacognition, that is being aware of one’s own knowledge states, and then turn to being aware of other’s mental states.

Metacognition.

Being aware of one’s own mental states, i.e., reflective consciousness, surely seems to be one of the most crucial components of self-awareness. In one paradigm used to test for metacognitive awareness, monkeys were trained to select, out of a number of two or more images, the one that is identical to an image they have been shown earlier. As is to expected, the monkeys’ performance progressively deteriorated the longer the delay was between the sample image and the selection task.

 

Continue reading “Animal Cognition & Consciousness (II): Metacognition & Mentalizing”

Animal Cognition & Consciousness (I): Mirror Self-Recognition

Darwin made a mistake. At least that is what Derek Penn and his colleagues (2008) claim in a recent and controversial paper in Behavioral and Brain Sciences. Darwin (1871) famously argued that the difference between humans and animals was “one of degree, not of kind.”

This, according to Penn et al. is of course true from an evolutionary perspective, but in their view,

“the profound biological continuity between human and nonhuman animals masks an equally profound discontinuity between human and nonhuman minds” (Penn et al. 2008: 109).

They hold that humans are not simply smarter, but human cognition differs fundamentally and qualitatively from that of other animals.

One pervasive proposal is that we do not simply possess a unique set of cognitive capacities, but that it might be consciousness itself that is uniquely human as well, a view that goes back at least to Descartes (Burkhardt & Bekoff 2009: 41). However, there are also many scholars and researchers who agree that there is evidence for higher-order cognition in nonhuman animals ( ‘animals’ after this) and that they might possess at least some degree of consciousness (Burkhard & Bekoff 2009: 40f.).

In this and my next post, I will write about three kinds of phenomena that are most often discussed in debates on whether animals have some form of higher-order cognition and consciousness or not: self-awareness, awareness of one’s own cognitive states, and awareness of others’ cognitive states and intentions.

Continue reading “Animal Cognition & Consciousness (I): Mirror Self-Recognition”

Social structure and language evolution: resolving the synthetic/analytic debate

A cultural evolution approach to language suggests that genes encode weak prior biases that can be amplified through cultural transmission to produce strong language universals.  Below is a diagram from Kirby, Dowman & Griffiths (2007).

The link between biological predispositions and language structure, from Kirby, Dowman & Griffiths, 2007.

Note the long-term feedback between language universals and genes.  However, recent research is pointing towards a more complicated picture.  Continue reading “Social structure and language evolution: resolving the synthetic/analytic debate”

Deictic Gestures in Ravens

Ravens can point. It’s scary how clever birds can be.

Guys! Guys! Guys!

Ravens can point. It’s scary how clever birds can be. People keep sending me this paper so I thought I’d link to it here so that people know I’ve seen it and stop bothering me (I actually don’t mind being bothered, especially if it’s about interesting things like this, please don’t stop). Abstract below.

Around the age of one year, human children start to use gestures to coordinate attention towards a social partner and an object of mutual interest. These referential gestures have been suggested as the foundation to engage in language, and have so far only been observed in great apes. Virtually nothing is known about comparable skills in non-primate species. Here we record thirty-eight social interactions between seven raven (Corvus corax) dyads in the Northern Alps, Austria during three consecutive field seasons. All observed behaviours included the showing and/or offering of non-edible items (for example, moss, twigs) to recipients, leading to frequent orientation of receivers to the object and the signallers and subsequent affiliative interactions. We report evidence that the use of declarative gestures is not restricted to the primate lineage and that these gestures may function as ‘testing-signals’ to evaluate the interest of a potential partner or to strengthen an already existing bond.

If you’re interested in reading about referencial gestures in humans and chipanzees and why these things are relevant to the evolution of language you should read Michael’s post here.